
Algebraic Geometry: MIDTERM SOLUTIONS

C.P. Anil Kumar

Abstract. Algebraic Geometry: MIDTERM.We give terse solutions to this Midterm
Exam.

1. Problem 1:

Problem 1 (Geometry 1).

(1) Let I1, I2 ⊂ R be ideals. Then show that rad(I1I2) = rad(I1 ∩ I2).
(2) Let I ⊂ R be an ideal. Suppose there exists a prime ideal P such that

Ik ⊂ P ⊂ I for some k ∈ Z+. Show that p = I = rad(I).

Solution 1.

(1) A prime ideal contains I1I2 if and only if the prime ideal contains I1 ∩ I2.
(2) Take radicals.

2. Problem 2:

Problem 2 (Geometry 2). Find all the automorphisms of A1.

Solution 2. (1) If k is algebracally closed then any regular funtion f : A1 −→ k
is a polynomial in one variable.

(2) If k is not algebraically closed then a regular function f need not be a poly-
nomial function. For example for the field of real numbers f : R −→ R we
can take f(x) = 1

x2+1
.

(3) If k is an infinite field like an algebraically closed field then the space of
polynomial functions and polynomials agree.

(4) If f is injective polynomial then f(x) = a has to have at most one root for
all a ∈ k.

(5) If k is algebraically closed of characteristic 0 then f must be linear with
f(x) = ax + b with a 6= 0, a, b ∈ k. Also f−1 is a linear polynomial and a
regular function.

(6) If k is not algebraically closed of characteristic 0 say the field of real numbers
then consider the degree three polynomial f(x) = x3. It is injective but not
linear.
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(7) If k is algebraically closed of characteristic p where p is a prime then f(x) =
g(xp) where g is an injective polynomial and hence by induction on degree

f(x) = axp
n

+ b.

(8) If f, f−1 are both polynomials of degree n,m respectively then

f ◦ f−1 = 1k = f−1 ◦ f.

So by a degree argument we have f and f−1 both must be linear.

(9) If k is algebraically closed then f(x) = ax + b and f−1 is also linear and a
regular function.

(10) For an algebraically closed field

Aut(A1) = {T(a,b) : k −→ k | T (x) = ax+ b, a ∈ k∗, b ∈ k}.

(11) Some more facts:

• If

– k is a finite field

– or k is an algebraically closed field of characteristic zero

then any bijective regular function ψ : k −→ k is given by a polynomial
in one variable which also has a regular polynomial inverse.

• This is not true for an algebracally closed field of characteristic p.

• This is not true for a non-algebracally closed field of characteristic 0.

3. Problem 3

Problem 3 (Geometry 3). Let I1, I2 be ideals in the polynomial ring k[x1, x2, . . . , xn].
Show that for if I2 is not contained in any of the associated primes of I1 then (I1 :
I2) = I1.

Solution 3. Let I1 =
r
∩
i=1
Qi be its primary decomposition with rad(Qi) = Pi. Let

x ∈ (I1 : I2) then xI2 ⊂ I1. Let yi ∈ I2\Pi. Then xyi ∈ Qi ⇒ x ∈ Qi. So

x ∈
r
∩
i=1
Qi = I1 ⇒ (I1 : I2) ⊂ I1. Also clearly I1 ⊂ (I1 : I2). So the problem follows.

4. Problem 4

Problem 4 (Geometry 4). Let I ⊂ R be an ideal and a ∈ R. Suppose there exists for
some integer M ≥ 0 we have (I : aM) = (I : aM+1). Show that ∪

m
(I : am) = (I : aM).

Solution 4. We observe that (I : aj) ⊂ (I : ai) for all i ≥ j. We have for any b ∈ R

baM ∈ I ⇐⇒ baM+1 ∈ I.

So we also have baM+2 ∈ I then baaM+1 ∈ I. So baaM = baM+1 ∈ I ⇒ baM ∈ I. So
by induction we have for j ≥M if baj ∈ I then baM ∈ I. So the problem follows.
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5. Problem 5

Problem 5 (Geometry 5). Let R be a commutative ring with unity. Consider the
set Spec(R) = {p ∈ R | p is a prime ideal}. Describe C[X],R[X].

Solution 5. We observe that every polynomial over C[X] factorizes completely and
every odd degree polynomial in R[x] has a root.

(1) The prime ideals in C[X] are (0) and (x− a) where a ∈ C.

(2) The prime ideals in R[X] are (0) and (x2 + ax+ b), (x− c) where c ∈ R and
x2 + ax+ b is a quadratic irreducible.

6. Problem 6

Problem 6 (Geometry 6). Describe all rational maps A1 −→ C where C ⊂ A2 is
the curve given by V (y2 − x3).

Solution 6. The space A1 is irreducible hence any open subset of A1 is dense and
irreducible. Hence the image of an open set under a regular map is also irreducible.
Now C has a cofinite topology. So the irreducible subsets are

(1) A single point.

(2) Any infinite subset of A1 (cofinite topology) is also irreducible topologically.

Now consider this particular polynomial map ψ : A1 −→ C given by t −→ (t2, t3)
with a rational inverse defined on C\{(0, 0)} given by (x, y) −→ y

x
. Using this map

if φ : A1 −→ C is rational map then ψ−1 ◦ φ : A1 −→ A1 is rational map and hence
must be a rational function. So there exist p ∈ C[t], q ∈ C[t]\{0} such that

ψ−1(φ(t)) =
p(t)

q(t)
⇒ φ(t) =

(
(
p(t)

q(t)
)2, (

p(t)

q(t)
)3
)
.

So the space of all rational maps is described as

HomRat(A1, C) = {φp,q | p ∈ C[t], q ∈ C[t]\{0}, φ(t) =
(
(
p(t)

q(t)
)2, (

p(t)

q(t)
)3
)
}.

Actually the image of rational map φp,q is either a single point or misses the point
(0, 0). The domain of the rational map is {t ∈ A1 | q(t) 6= 0} a complement of a finite
set in A1.

7. Problem 7

Problem 7 (Geometry 7). Don’t assume k is algebraically closed for this problem.
Let A = (xy, yz, zx) ⊂ k[x, y, z]. Is A = I(V (A))? Prove that A cannot be generated
by 2 elements.

Solution 7. (1) Let f ∈ k[x, y, z]. We observe the following that fn has mono-
mial terms in single variables x, y, z alone or a constant term if and only if
fn has monomial terms in single variables x, y, z alone or a constant term.
With this observation we immediately conclude that A is a radical ideal.

(2) Now for all fields k, V (A) = (X − axis) ∪ (Y − axis) ∪ (Z − axis).
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(3) If k is a non-algebraically closed field then let p ∈ k[x] be a non-constant
polynomial in one variable which has no roots in k. Then its homogenization
P [x, y] = ydeg(p)p(x

y
) has only origin (0, 0) as a root. This must have single

monomial terms in both the variables x, y. Now consider the polynomial
F [x, y, z] = P [P [x, y], z]. This polynomial also must have single monomial
terms in each of the variables x, y, z. Now the function F vanishes only at
the origin in k3.

(4) Let k = Fq a finite field. Now the roots of the polynomial

G[x, y, z] = F [xq − x, y, z]F [x, yq − y, z]F [x, y, zq − z]
is exactly V (A). The polynomial G ∈ I(V (A)) but it has monomial terms in
single variable x, y, z hence does not belong to A.

(5) For finite fields k = Fq we have A 6= I(V (A)) even though both are radical
ideals.

(6) Now if k is not a finite field then the class of polynomials functions agree
with the class of polynomials. The alternative description of the ideal A =
{f : k3 −→ k | f(α, 0, 0) = f(0, β, 0) = f(0, γ, 0) = 0 for all α, β, γ ∈ k}.
This is because if f(α, 0, 0) = 0 for all α ∈ k then f does not have monomial
terms only in x. Similarly f does not have monomial terms only in y or only
in z. So f ∈ A.

(7) For an infinite field A = I(V (A)).
(8) The ideal A is a homogeneous ideal. It does not have degree zero or degree

one polynomials. Now A cannot be generated by two elements because if

k[x, y, z] = V0 ⊕ V1 ⊕ V2 ⊕ . . .
and

A = A0 ⊕A1 ⊕A2 ⊕ . . .
where Ai = A ∩ Vi then dimk(A0) = 0, dimk(A1) = 0, dimk(A2) = 3. Hence
A cannot be generated by 2-elements because dimk(A2) = 3.

8. Problem 8

Problem 8 (Geometry 8). Don’t assume k is algebraically closed for this problem.
Let A = (x2 + y2 − 1, y − 1) = (x2, y − 1). Describe I(V (A))\A.

Solution 8. For any field k we have V (A) = {(0, 1)}. So I(V (A)) = (x, y − 1).

I(V (A))\A = {f(x, y) ∈ k[x, y] such that x | f(x, 1), x2 - f(x, 1)}.
We have f(x, y)− f(x, 1) = (y − 1)h(x, y). First we observe that f(x, y) ∈ I(V (A))
if and only if x | f(x, 1). If f(x, y) = α(x, y)x + β(x, y)(y − 1) ∈ A if and only if
α(x, y)x+ β(x, y)(y − 1) = γ(x, y)x2 + δ(x, y)(y − 1). So we get f(x, 1) = α(x, 1)x =
γ(x, 1)x2 which holds if and only if x | α(x, 1) which holds if and only if x2 | f(x, 1).

9. Problem 9

Problem 9 (Geometry 9). Let X = V (x1x4 − x2x3) ⊂ A4
k. Show that A(X) is a

UFD? Find a height 1 prime ideal which is not principal. Let φ : X −→ A1
k be a

rational morphism defined as φ((x1, x2, x3, x4) ∈ X) = x1
x2

then find the domain of φ.
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Solution 9. Consider the element t = x1x4 = x2x3. This element as two different
factorizations into irreducibles x1, x2, x3, x4. Let us prove the element x1 is irreducible.
Suppose x1 = f(x1, x2, x3, x4)g(x1, x2, x3, x4) then (x1x4 − x2x3) | (fg − x1). i.e.

f(x1, x2, x3, x4)g(x1, x2, x3, x4)− x1 = h(x1, x2, x3, x4)(x1x4 − x2x3).

Now substitute for x4 the term x2x3
x1

. We get that

f(x1, x2, x3,
x2x3
x1

)g(x1, x2, x3,
x2x3
x1

)− x1 = 0.

Now let

f(x1, x2, x3,
x2x3
x1

) =
F (x1, x2, x3)

xm1
, g(x1, x2, x3,

x2x3
x1

) =
G(x1, x2, x3)

xn1

Now we have in the UFD k[x1, x2, x3] FG = xm+n+1
1 . Hence we get F (x1, x2, x3) =

αxr1, G(x1, x2, x3) =
1
α
xs1 where r+s = m+n+1 with α ∈ k∗. Now substituting above

x2 = 0, x3 = 0 we get that

f(x1, x2, x3,
x2x3
x1

)
identically equal

≡ f(x1, 0, 0, 0) = αxr−m1

and

g(x1, x2, x3,
x2x3
x1

)
identically equal

≡ g(x1, 0, 0, 0) =
1

α
xs−n1 .

So we conclude the following.

• r ≥ m, s ≥ n as f(x1, 0, 0, 0), g(x1, 0, 0, 0) are polynomials in x1 with r+ s =
m+ n+ 1.

• By factor theorem applied in the UFD k[x1, x2, x3]{1,x1,x21,...,}[x4]

f(x1, x2, x3, x4)− αxr−m1 = (x4 −
x2x3
x1

)
K(x1, x2, x3, x4)

xt1

for some K ∈ k[x1, x2, x3]{1,x1,x21,...,}[x4]. Now LHS is a polynomial and RHS
has a denominator in x1. Hence clearing denominators in RHS and using
UFD property of the ring k[x1, x2, x3, x4] we get

f(x1, x2, x3, x4)− αxr−m1 = (x4x1 − x2x3)K1

where K1 is a polynomial in the four variables x1, x2, x3, x4. Similarly

g(x1, x2, x3, x4)−
1

α
xs−n1 = (x4x1 − x2x3)K2

where K2 is a polynomial in the four variables x1, x2, x3, x4.

Hence the factorization reduces to

x1 = αx1
r−m 1

α
x1

s−n

with r ≥ m, s ≥ n and r+s = m+n+1. This implies either r = m+1, n = s
or r = m, s = n + 1. Hence we conclude that this factorization is a trivial
factorization. So x1 is irreducible.
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Similarly x2, x3, x4 are also irreducibles.

The factorizations are clearly different because the set

{α1x1, α2x2, α3x3, α4x4}
with αi ∈ k∗ : i = 1, 2, 3, 4 is a 4−set i.e. it has four distinct elements of the ring
A(X) because the ideal (x1x4 − x2x3) is a homogeneous ideal which has no degree 1
elements. This proves that A(X) is not a UFD.

The prime ideal (x1, x2) is an ideal which is prime ideal of height one and it is not

principal. Under the quotient map k[x1, x2, x3, x4] −→ k[x1,x2,x3,x4]
(x1x4−x2x3) , the ideal (x1, x2)

is a prime in the polynomial ring containing the kernel produces a prime ideal in
the quotient by the bijective correspondence of prime ideals which contain the kernel
under the quotient map.

This is a prime ideal of height one because dimension of the ring goes down by one
when we quotient by the principle prime ideal (x1x4 − x2x3) which is an irreducible
(non-unit, non-zerodivisor) using dimension theory. Hence the height of (x1, x2) which
was 2 in the polynomial ring goes down by 1 in the quotient. So (x1, x2) is a height
one prime ideal. This is clearly not principal as x1, x2 are two different irreducibles
which do not differ by units.

The domain of the rational map φ : X −→ A1 is given by

{(x1, x2, x3, x4) ∈ X | either x2 6= 0 or x4 6= 0} ⊂ X.

Let (x1, x2, x3, x4) ∈ X. Suppose x2 = 0 then we have x1x4 = 0 so if x4 6= 0 then we
get an alternative definition for φ(x1, x2, x3, x4) =

x3
x4

which gives an extension of the
domain. Now if both x2 = 0 = x4 then we observe the following.

If t = x1
x2
∈ Quotient− Field(A(X)) and r1

r2
is any other representative for t then we

have r1x2 − r2x1 ∈ (x1x4 − x2x3). Substituting x2 = 0 we get that

x4 | r2(x1, 0, x3, x4)
Hence the domain of definition of φ cannot be extended beyond the above set in X.

This proves the problem.

10. Problem 10

Problem 10 (Geometry 10). Let φ : A1 −→ An be given as t −→ (t, t2, t3, . . . , tn).
Show that the image of φ is an affine variety and show that φ is an isomorphism onto
its image.

Solution 10. Clearly the inverse polynomial map is the first projection and the image
is precisely the zero set of the equations (xi − xi1 : 1 ≤ i ≤ n). This is irreducible
because A1 is irreducible. This proves the problem.
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