Algebraic Geometry: MIDTERM SOLUTIONS

C.P. Anil Kumar

ABSTRACT. Algebraic Geometry: MIDTERM. We give terse solutions to this Midterm
Exam.

1. Problem 1:
PROBLEM 1 (Geometry 1).

(1) Let Iy, Iy C R be ideals. Then show that rad(l112) = rad(l, N I).

(2) Let I C R be an ideal. Suppose there exists a prime ideal P such that
I* C P C I for some k € Z*. Show that p = I = rad(I).

SOLUTION 1.

(1) A prime ideal contains 1115 if and only if the prime ideal contains Iy N I.
(2) Take radicals.

2. Problem 2:
PROBLEM 2 (Geometry 2). Find all the automorphisms of Al.

SOLUTION 2. (1) If k is algebracally closed then any reqular funtion f : A' — k
s a polynomial in one variable.

(2) If k is not algebraically closed then a regular function f need not be a poly-
nomial function. For example for the field of real numbers f : R — R we
can take f(r) = =t

(8) If k is an infinite field like an algebraically closed field then the space of
polynomial functions and polynomials agree.

(4) If [ is injective polynomial then f(x) = a has to have at most one root for
all a € k.

(5) If k is algebraically closed of characteristic O then f must be linear with
f(x) = ax + b with a # 0,a,b € k. Also f~! is a linear polynomial and a
reqular function.

(6) If k is not algebraically closed of characteristic O say the field of real numbers
then consider the degree three polynomial f(x) = x3. It is injective but not
linear.
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(7) If k is algebraically closed of characteristic p where p is a prime then f(x) =
g(xP) where g is an injective polynomial and hence by induction on degree

f(z) = ax?" +0.
(8) If f, f~1 are both polynomials of degree n, m respectively then
foft=1,=f"of.

So by a degree argument we have f and f~1 both must be linear.

(9) If k is algebraically closed then f(x) = ax + b and f~1 is also linear and a
reqular function.

(10) For an algebraically closed field
Aut(A" = {T(apy 1 k — k | T(x) = az + b,a € k*,b € k}.

(11) Some more facts:
o [f
— k 1s a finite field
— or k is an algebraically closed field of characteristic zero

then any bijective reqular function v : k — k is given by a polynomial
in one variable which also has a reqular polynomaial inverse.

e This is not true for an algebracally closed field of characteristic p.

e This is not true for a non-algebracally closed field of characteristic 0.

3. Problem 3

PROBLEM 3 (Geometry 3). Let Iy, I5 be ideals in the polynomial ring k[xy, xa, . . ., Ty).

Show that for if I is not contained in any of the associated primes of Iy then (I :
IQ) == Il-

SOLUTION 3. Let I, = 461Qi be its primary decomposition with rad(Q;) = P;. Let
x € (I : Iy) then xls C I. Lety;, € L\P;. Then xy; € Q;, = = € Q;. So
T € <61Qi =10 = (L:1) C L. Also clearly I C (I : I3). So the problem follows.

4. Problem 4

PROBLEM 4 (Geometry 4). Let I C R be an ideal and a € R. Suppose there exists for
some integer M > 0 we have (I : a™) = (I : a™*1). Show that U(I : a™) = (I : a™).

SOLUTION 4. We observe that (I : a?) C (I : a*) for alli > j. We have for anyb € R
ba" € I <= bt e 1.

So we also have ba™*? € I then baa™* € I. So baa™ = ba™*™ € I = ba™ € 1. So
by induction we have for j > M if ba’ € I then ba™ € I. So the problem follows.
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5. Problem 5

PROBLEM 5 (Geometry 5). Let R be a commutative ring with unity. Consider the
set Spec(R) = {p € R | p is a prime ideal}. Describe C[X], R[X].

SOLUTION 5. We observe that every polynomial over C|X]| factorizes completely and
every odd degree polynomial in R[z| has a root.
(1) The prime ideals in C[X] are (0) and (x — a) where a € C.
(2) The prime ideals in R[X] are (0) and (2 + azx +b), (x — ¢) where c € R and
22 + ax + b is a quadratic irreducible.

6. Problem 6

PROBLEM 6 (Geometry 6). Describe all rational maps A* —s C where C C A? is
the curve given by V(y* — x3).

SOLUTION 6. The space Al is irreducible hence any open subset of A is dense and
wrreducible. Hence the image of an open set under a regular map is also irreducible.
Now C' has a cofinite topology. So the irreducible subsets are

(1) A single point.

(2) Any infinite subset of A' (cofinite topology) is also irreducible topologically.
Now consider this particular polynomial map v : A' — C given by t — (t2,13)
with a rational inverse defined on C\{(0,0)} given by (v,y) — L. Using this map
if ¢ : A — C is rational map then ="' o ¢ : A — Al is rational map and hence
must be a rational function. So there exist p € C[t],q € C[t]\{0} such that

p(t) pt) o p(t)

Do) = a0 =00 = (<@>2, <@>3)-

So the space of all rational maps is described as

p(t p(t
HomRat(A',€) = {6y | € €l 0 € CHMO. of0) = (C1)% (L")
Actually the image of rational map ¢, 4 is either a single point or misses the point
(0,0). The domain of the rational map is {t € A' | q(t) # 0} a complement of a finite
set in Al

7. Problem 7

PROBLEM 7 (Geometry 7). Don’t assume k is algebraically closed for this problem.
Let A = (zy,yz, zx) C k[z,y,z]. Is A=1(V(A))? Prove that A cannot be generated
by 2 elements.

SOLUTION 7. (1) Let f € klz,y, z]. We observe the following that f™ has mono-
mial terms in single variables x,y, z alone or a constant term if and only if
f™ has monomial terms in single variables x,y, z alone or a constant term.
With this observation we immediately conclude that A is a radical ideal.

(2) Now for all fields k, V(A) = (X — azxis) U (Y — axis) U (Z — axis).
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(3) If k is a non-algebraically closed field then let p € k[x] be a non-constant
polynomial in one variable which has no roots in k. Then its homogenization
Plz,y] = ydeg(p)p(g) has only origin (0,0) as a root. This must have single
monomial terms in both the variables x,y. Now consider the polynomial
Flz,y,z] = P[P[x,y],z]. This polynomial also must have single monomial
terms in each of the variables x,y,z. Now the function F vanishes only at
the origin in k3.

(4) Let k =T, a finite field. Now the roots of the polynomial

Glz,y,z| = Fla? — z,y, 2| Flz,y* — y, 2] Flx,y, 27 — 2]
is exactly V(A). The polynomial G € 1(V (A)) but it has monomial terms in
single variable x,y, z hence does not belong to A.

(5) For finite fields k = F, we have A # I(V(A)) even though both are radical

deals.

(6) Now if k is not a finite field then the class of polynomials functions agree
with the class of polynomials. The alternative description of the ideal A =

{f K — k| f(a,0,0) = £(0,3,0) = f(0,7,0) = 0 for all a, B,v € k}.
This is because if f(«,0,0) =0 for all a € k then f does not have monomial
terms only in x. Similarly f does not have monomial terms only in y or only

inz SofeA
(7) For an infinite field A= I1(V(A)).
(8) The ideal A is a homogeneous ideal. It does not have degree zero or degree
one polynomials. Now A cannot be generated by two elements because if
klx,y,z| =Voda Vi Vo ...
and
A:Ao@Al@AQ@...

where A; = ANV, then dimg(Ay) = 0, dimy(Ay) = 0, dimi(Az) = 3. Hence
A cannot be generated by 2-elements because dimy(Az) = 3.

8. Problem 8

PROBLEM 8 (Geometry 8). Don’t assume k is algebraically closed for this problem.
Let A= (2 +y*> — 1,y — 1) = (2%, y — 1). Describe I(V(A))\A.

SOLUTION 8. For any field k we have V(A) = {(0,1)}. So I(V(A)) = (z,y — 1).
I(V(A)\A = {f(z,y) € k[x,y] such that z | f(z,1),2*{ f(z,1)}.

We have f(x,y) — f(z,1) = (y — 1)h(z,y). First we observe that f(z,y) € I(V(A))
if and only if x | f(z,1). If f(z,y) = alz,y)z + B(x,y)(y — 1) € A if and only if
a(z, y)z+ Bz, y)(y = 1) = y(w,y)2* + 6(x,y)(y —1). So we get f(z,1) = a(z, r =
v(z,1)x? which holds if and only if x | a(x,1) which holds if and only if z* | f(x,1).

9. Problem 9

PROBLEM 9 (Geometry 9). Let X = V(xiz4 — zox3) C A}. Show that A(X) is a
UFD? Find a height 1 prime ideal which is not principal. Let ¢ : X — A} be a
rational morphism defined as ¢((x1,x2,x3,14) € X) = L then find the domain of ¢.
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SOLUTION 9. Consider the element t = T1x4 = Tax3. This element as two different
factorizations into irreducibles Ty, Ts, T3, T4. Let us prove the element Ty s irreducible.

Suppose Ty = f(xy1, T2, x3,24)g(x1, To, T3, x4) then (v124 — xoxs) | (fg — x1). i.e.

f(xlu x273737374)g(55171727 €3, x4> — T = h(xthu x37x4)<'r1x4 - Q:ng).

Now substitute for x4 the term 2%, We get that

1

Lol ToT3

f(xl,l’g,l’g, )g(x17$27x37 ) — X1 = 0.
T T
Now let
Lo F(ry, w2 Tox G(x1, 20,7
f(.flfl,,fg,l‘?)’ 2 3) — ( 17m27 3)79(371,1'2,.@3, 2 3): ( 1>n27 3)
I ik T a7

Now we have in the UFD k[xy, 7y, 73] FG = """, Hence we get F(x1,7s,73) =
azt, G(xy, e, x3) = éa:f where r+s =m+n+1 with a € k*. Now substituting above
xo = 0,23 = 0 we get that

ToZ3 . identically equal

fl1, 22, 3, =) = f(x1,0,0,0) = az!™™
1
and
ToX3 . identically equal 1 _
g(21, 22, 23, —) = 9(21,0,0,0) = —a;™".
1

So we conclude the following.
e r>m,s>nas f(r1,0,0,0),g(x1,0,0,0) are polynomials in x1 with r+ s =
m+n+ 1.
e By factor theorem applied in the UFD k1, x2, T3](1 4, 22, (T4

Tol3 K(I17 X2, X3, I4)

r—m

f(331>$2,1'37334) — QT = (iU4 -

)

Ty x}

for some K € k[xy, T, ¥3](1 4, 02,y [x4]. Now LHS is a polynomial and RHS
has a denominator in x,. Hence clearing denominators in RHS and using
UFD property of the ring k[xy, xa, x5, x4] we get

f(x1, x0, w3, 24) — ax] ™ = (421 — T2w3) K

where Ky 1s a polynomial in the four variables x1,xo, x3,x4. Similarly
S—n
g(1, v2, 13, 14) — 511 = (471 — To73) Ky

where Ky 1s a polynomial in the four variables x1,xs, x3, 4.

Hence the factorization reduces to

:L,—l — ax—lr—m_lfls—n
withr > m,s >n andr+s =m+n+1. This implies eitherr = m+1,n=s
orr =m,s =n+ 1. Hence we conclude that this factorization is a trivial
factorization. So Ty is irreducible.
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Similarly T3, T3, T4 are also irreducibles.
The factorizations are clearly different because the set

{Oélx_la O52x_27 043'%_37 044:5_4}

with a; € k* : 1 =1,2,3,4 is a 4—set i.e. it has four distinct elements of the ring
A(X) because the ideal (x1x4 — T273) is a homogeneous ideal which has no degree 1
elements. This proves that A(X) is not a UFD.

The prime ideal (T1,T3) is an ideal which is prime ideal of height one and it is not
principal. Under the quotient map k[xq, e, x3,x4) —> %, the ideal (x1,z3)
15 a prime in the polynomial ring containing the kernel produces a prime ideal in
the quotient by the bijective correspondence of prime ideals which contain the kernel
under the quotient map.

This is a prime ideal of height one because dimension of the ring goes down by one
when we quotient by the principle prime ideal (v1x4 — x2x3) Which is an irreducible
(non-unit, non-zerodivisor) using dimension theory. Hence the height of (1, xs) which
was 2 in the polynomial ring goes down by 1 in the quotient. So (T1,T3) is a height
one prime ideal. This is clearly not principal as Ty, T2 are two different irreducibles
which do not differ by units.

The domain of the rational map ¢ - X — Al is given by
{(x1, 20, 23,24) € X | either zy #0 or x4 # 0} C X.

Let (x1, 9, x3,4) € X. Suppose x5 = 0 then we have x1xy = 0 so if x4 # 0 then we
get an alternative definition for ¢(xq, xa, x3,4) = 22 which gwes an extension of the
domain. Now if both xo = 0 = x4 then we observe the following.
Ift = % € Quotient — Field(A(X)) and % is any other representative for t then we
have r1xy — roxy € (124 — xow3). Substituting xo = 0 we get that

xy | ro(xq,0, 23, 24)

Hence the domain of definition of ¢ cannot be extended beyond the above set in X.
This proves the problem.

10. Problem 10

PROBLEM 10 (Geometry 10). Let ¢ : A — A" be given as t — (t,t%,13,...,t").
Show that the image of ¢ is an affine variety and show that ¢ is an isomorphism onto
1ts image.

SOLUTION 10. Clearly the inverse polynomial map is the first projection and the image
is precisely the zero set of the equations (x; — x% : 1 < i < n). This is irreducible
because A' is irreducible. This proves the problem.
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